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My World….
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Focus

• Complex analyses
on observational, scientific data

• Practical solutions

• Extreme scale (think: 100+ PBs)
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Outline

• Extreme scale scientific analyses
• Data intensive computing realm
• Complexity of scientific data sets
• Current trends
• Existing solutions
• Summary
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Scientific Analyses

• Needle in haystack
– Unsure what the needle looks like

• Time series
• Spatial correlations
• Real-time outliers detection
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Outline

• Extreme scale scientific computing
• Data intensive computing realm
• Complexity of scientific data sets
• Current trends
• Existing solutions
• Summary
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Bandwidth, not Capacity

• 1 PB @50MB/sec = 230 days
• 1 PB in 1h @50MB/sec/disk  6K disks 

– but 1TB disk not uncommon today

• I/O driven, not capacity driven
– Multiple copies often come for “free”

• Can trade some I/O for CPU 
– Compute on the fly
– Compress (so-so for science data)
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Big Bandwidth –> Big Clusters

• Too many disks/node 
= memory bottleneck

• Clusters measured in 100s, 1,000s
• Challenge

– Mgmt overhead, full automation
– Dealing with routine failures

• MTBF= 50years & 6K disks = failure every 3 days
– Avoiding shared resources



10

Petabyte > One Table

• Data must be partitioned and distributed 
– Many trade-offs!

• Many reasons
– Petabyte in a single table not an option
– Large projects = distributed funding/computing
– Distributing for backup
– Specialized data centers
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Issues in Partitioning & Distribution

• Large #partitions vs large partitions
• Fixed-size vs variable-size chunking
• Progressive
• Adaptive
• 1-level vs 2-level partitioning
• Materialized vs on-the-fly
• Overlaps
• Random vs controlled distribution
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Constant Change –> Flexibility

• Grow incrementally
– Scale out

• Uncertainty, highly varying load
– System has to adapt, don’t want to overbuild

• Large monolithic systems are hard 
to make failure proof
– Complexity in H/W vs in S/W



13

Other Challenges

• Cost estimate
• Approx results

– to speed up exploration
– to skip failed nodes (if acceptable)

• Job pause/restart
• Self management

– auto-load balance, auto-fail over, auto-QA
• Relaxed consistency
• Provenance tracking
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Outline

• Extreme scale scientific computing
• Data intensive computing realm
• Complexity of scientific data sets
• Current trends
• Existing solutions
• Summary
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Data is Clustering-Intensive

• Order
– Time series

• Locality
– Spatial, temporal

• Adjacency
– Neighbors

• Correlations
– Densities
– External catalogs

HEP is lucky

This applies to 
many sciences… 

geo, astro, bio
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…Multi-Dimensional and Uncertain

• Typically few dimensions
– Spatial (2-3)
– Temporal
– Sometimes frequency

• Can’t effectively cluster on all dimensions
• Uncertain

– Measurements
– Results
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Many Industries Are No Different
• Weblog analytics

– Personalization of rankings using predictive modeling
• Netflix $1M challenge 

– Optimizing ad placement
– What-if analysis to tune search engines

• Financial services
– Risk calculation; risk management
– Long term strategy modeling
– Real-time trading models

• Deep sequencing analytics for drug discovery
– Put whole gene together from overlapping fragments 

where each segment carries probability of correct decode
• Digital medical imaging analytics

– Find all the patients with MRIs that looked like this one
• Oil and gas discovery geological data

– Produce an underground map from signal data
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• Complexity of scientific data sets
• Current trends
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• Summary
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Scientific Analytics – Paradigm Shift

• Do-it-yourself analyses do not scale
– Petabyte won’t fit on your laptop

• Extreme analyses requires centralization
– Data providers vs data analyses centers
– Moving computation to data and sharing 

resources much more cost effective 
at extreme scale

• Application specific optimizations
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Shared Nothing Clusters

• Why not SAN?
– Designed for management not  bandwidth
– Expensive
– Inter-switch bandwidth limits
– No fine-grain control over placement
– Sending data to query

• Why not traditional HPC?
– Designed for FLOPS not I/O
– Assumes little data movement
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Pushing Computation to Data

• Moving data is expensive

• Push computation to data
or compute “near” data

• Happens at every level
– Send query to closest center
– Process query on the server that holds data
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I/O and Network Improvements

• Limit accessed data
– Generate commonly accessed data sets
– Columnar stores

• De-randomize I/O
– Copy and re-cluster pieces accessed together

• Segregate and combine I/O
– Separate random reads from sequential scans
– Tune placements and indexing per data set
– Share scans

• Trade CPU for I/O
•Sequential access
•No need for indexes
•Simple model
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• Extreme scale scientific computing
• Data intensive computing realm
• Complexity of scientific data sets
• Current trends
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• Summary
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Data Mgmt Systems in Practice

• Off-the-shelf RDBMS based
– eBay, WalMart, Nokia, BaBar, SDSS, 

PanSTARRS, LSST
• Custom software, structured files + metadata 

in RDBMS
– All HEP, most geo, many in bio, ... 

• Custom software, custom format
– Google, Yahoo!, Facebook, ... 

(but still use RDBMS for OLTP)
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DBMS vs Hadoop & Map/Reduce

• System catalog and 
storage manager
– Knows where relevant 

data resides
– Co-locates related sub-

regions
• Processing close to the 

data

• No Underlying data and 
storage model
– Schema in application 

code
– Data hash partitioned

• Processing near the 
data (akin to ETL)

Non-ideal for 
multi-decade 
experiments

Non-ideal for  
clustering-

intensive data sets
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Convergence

• DBMS vendors
– Rush towards shared-nothing*

• Teradata had it, IBM: DB2 Parallel Edition, 
Oracle: Exadata, Microsoft: Madison

• Emergence of shared-nothing MPP DBMS startups
– Adding map/reduce paradigm support

• AsterData, Greenplum, Teradata, Netezza, Vertica

• Map/Reduce
– Rush to add db-ish features 

(schemas, indexes, more operators)

*De facto, shared-nothing internally implements map/reduce
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Query Service (qserv)

• Shared-nothing on top of MySQL
• Built for analyses on immutable data sets
• Optimized for spatial and temporal analyses 

on extreme scale data sets
• Overlapping partitioning, fixed chunks, 

1st level materialized, 2nd on the fly
• Shared scans (available ~Q4’10)
• Fault tolerance
• Usable prototype in public domain in Q2’10



28

Qserv Architecture

Deploying for 
wide use by 

LSST science 
collaborations 
on 20 TB data 
set this year
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SciDB

• Shared-nothing MPP DBMS
• Arrays

– natively supported arrays 
(basic, enhanced: ragged, nested...) 

– array operators

Open source DBMS for 
scientific research
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Traditional RDBMS vs Arrays

• Data model
– Need n-d arrays, not tables
– Simulating arrays on top of tables costs ~x100
– Locality, adjacency is natural in n-dimensional space
– Tracking uncertainty or units becomes just another 

dimension

• Operations
– Need array operators and parallel user-defined-functions 

not SQL
– Think regrid, smooth, not join
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SciDB (…cont)

• Overlapping partitions
• Basic uncertainty support
• Scalability to 100s PB, 1,000s nodes

– high degree of tolerance for failures
• Massively parallel system, including user defined functions
• AQL (an array & analytics query language)
• Extensibility for integrating domain specific algorithms, 

languages or packages like R and MATLAB
• In-situ data, including netCDF and HDF5
• Named versions
• Shared scans

– Attribute-store with aggressive compression (multiple options)
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SciDB (…cont)

• Ideal for…
– Managing / analyzing gridded / n-d data sets

• Such as images

– Complex analyses on large data sets
• Time series, spatial correlations, curve fitting, eigenvalues, 

covariance

• Strong team 
– 20+, including world-class database pioneers
– Mostly volunteers from academic, science and industrial 

communities
• 3 POC’s underway

• LSST (demo @VLDB), quantitative finance, genomic sequencing
• Tests with LHC Atlas tag data
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How To Learn More / Get Involved?
• LSST, including qserv

– Check out lsst database trac at
http://dev.lsstcorp.org/trac/wiki/LSSTDatabase

• XLDB
– Attend XLDB4 (Oct 6-7@SLAC)
– Read past XLDB reports

http://www-conf.slac.stanford.edu/xldb
– Share your use cases, join the community

• SciDB
– Check out http://scidb.org
– Follow through mailing list(s), on Twitter, soon LinkedIn, Facebook
– Try it out
– Attend community meeting (Oct 7 @SLAC)

Open conference starting this year

1st public release (alpha) next month

http://dev.lsstcorp.org/trac/wiki/LSSTDatabase�
http://www-conf.slac.stanford.edu/xldb�
http://scidb.org/�
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Summary

• Exascale is closer than you think

• Shared-nothing clusters for
extreme scale computing

• New techniques required for clustering-
intensive, multi-d, uncertain data

• Solution providers are starting to address 
big science needs
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